

Value Stack Calculator Overview

Joint Utilities Stakeholder Conference

Luke Forster, NY-Sun 11.30.2017

Brief Overview of Value Stack

The Value Stack

- As part of VDER, the Value Stack is gradually replacing Net Metering.
- Compensates energy producers with monetary credits, not volumetric credits. Customers will see a dollar credit on their bill
- While net metering allowed customers to "bank" kWh credits that are injected to the grid for later use, the value stack converts the credits to dollars.
- The value of a kWh is related to when and where it is generated: greater compensation in congested parts of the electric grid, during periods of high demand

On-site consumption Vs Grid Injections

- Energy that is "injected" or pushed into the distribution grid will be compensated through the value stack
- PV production that is immediately consumed onsite never goes to the grid, so it is not compensated through the value stack
- Example:
 - A PV system produces 1000kWh in a given month. 600kWh are immediately consumed on-site by the customer, and the other 400kWh are sent to the grid
 - On his monthly bill, the customer sees a monetary credit, based on the 400kWh. The customer's monthly electric consumption is reduced by the 600kWh he consumed on-site: he is simply not billed for those 600kWh

NYSERDA

LBMP – Wholesale Cost of Energy

- Day-ahead hourly locational-based marginal pricing (LBMP), inclusive of electrical losses
- Based on <u>NYISO zonal prices</u>
- Fluctuates based on demand for electricity and fuel prices

ICAP - Capacity

- Compensation per kWh, based on the capacity portion of the utility's full service market supply charges (similar value as NEM)*
- Alternative 1 (default) spread across all hours of the year
- Alternative 2 a higher rate, but paid only on injection during 460 summer hours (2-7PM, June-Aug). Projects with storage may want to opt into this option
- Alternative 3 tied to grid injections during single highest annual hour of peak grid demand

*For intermittent technologies

E- Environmental Value

- Environmental compensation is the higher of:
 - The applicable Tier 1 REC price per kWh generated delivered (currently \$0.02424 per kWh)
 - The social cost of carbon (SCC) per kWh value minus Regional Greenhouse Gas Initiative
- E value is locked in for 25 year project term when a project executes its SIR contract, or makes 25% payment on interconnection costs

	AVOIDED D	
→	E	
	CAPACITY	
	LBMP	

DRV – Demand Reduction Value

Value of PV System's Reduction of Peak Grid Distribution Demand

- For projects, or portions of projects, that do not receive MTC
- Compensation is tied to PV system grid injections over the grid's 10 highest usage hours per year
- DRV rate is locked for 3 years when a project executes its SIR contract, or makes 25% payment on interconnection costs

LSRV – Locational Adder

- LSRV is paid for projects located on sections of the grid that are badly in need of DG. Each utility has provided maps and MW limits
- Like DRV, LSRV payments tied to PV system output during year's 10 peak hours of utility demand (modeled in Year 1)
- Paid for first 10 years of project term
- LSRV rate is locked in when project pays 25% of interconnection upgrade costs or executes SIR

MTC – Market Transition Credit

- For CDG only: MTC is applied to CDG mass market membership proportion
 - Ex., if a project has 70% mass market (nondemand) offtakers and 30% large commercial off-takers, the project will receive MTC on 70% of generation, and DRV on 30% of generation
- MTC is also available for Mass Market and non-CDG projects that opt-in to the Value Stack
- The MTC is fixed and applies to a project's 25-year VDER term
- Projects are locked into MTC tranche when they pay 25% interconnection upgrade costs, or execute SIR

CDG Tranche Design

- MTC = Difference between Base Retail Rate and Estimated Value Stack
- Intended to make estimated CDG compensation...
 - equal to Base Retail Rates (NEM) in Tranche 1
 - 5% less than NEM in Tranche 2
 - 10% less than NEM in Tranche 3

Section 2

The Value Stack Calculator

Purpose of the Calculator

GOAL - To allow PV contractors to easily estimate project compensation under the value stack

- Developed by NY-Sun and E3
- We have received and incorporated feedback from utilities and a number of PV developers
- Available for free at <u>nyserda.ny.gov/vder</u>

The Value Stack Calculator DOES

- Provide a reasonably accurate calculation of the \$ value of a PV system's production
- Allow users to input their own forecast data
- Undergo revisions and updates

The Value Stack Calculator DOES NOT

- Provide a 100% perfect guarantee of project revenue. Weather, future energy prices, forecast assumptions, and project-specific project's performance are unknowns
- Calculate project costs, return on investment, etc. This is outside the calculator's scope
 - However, users can port the calculator's outputs into their own financial models

Additional Notes

- The Calculator is a large Excel file (33MB). It may take a minute to run, and is too large to attach to most emails
- If you use incorrect/inappropriate inputs, the results will not be accurate
- Questions? <u>VDER@nyserda.ny.gov</u> or contact Luke Forster

Calculator Next Steps

- Continue to make adjustments developer input
- Keep pace with changing source data
- Finesse storage section
- Expand to include other technologies (anaerobic digesters, small wind, etc)
- Add Long Island when LI adopts VDER

Demo of Calculator

Nyserda.ny.gov/vder

VDER Value Stack Calculator (NEW)

The Value Stack Calculator was developed to provide an accurate estimate of a PV project's compensation under the Value Stack.

The Value Stack Calculator will be periodically updated and revised: please make sure you are using the most recent version of the calculator. It requires a recent version of Microsoft Excel.

NEW Calculator Version 1.4 [XLS], Revised 11/28/2017

Rev 1.4 includes the following changes:

Also VDER FAQs, links, CDG Tranche capacity, etc

Solar Project Inputs

Inputs

Project Category

Community distributed generation characteristics % of output serving demand-based commercial customers % of output serving mass market offtakers Of this 60%, share that were on SC-1 rate *versus* Share that were on SC-2 rate Tranche

Solar characteristics

Solar generation Source for solar generation shape (kWh AC) Nearest location (weather file) Azimuth Mount Solar system size (kW DC) Inverter size (kW) Inverter losses (% of DC energy) System losses (% of DC energy)

On-site loads

Source for on-site load shape (kWh) Building type (for on-site load shape) Annual electric usage at host site (kWh)

Annual solar export degradation rate

Solar Local Distribution System Impact

Weighted average solar output during top 10 DRV hours (kW) User Override of average output during DRV and LSRV top hours (kW)

Community distributed generation

40%	
60%	
20%	
80%	
3	

Calculated based on inputs below					
New York City					
180° (S)					
Fixed (open rack)					
120					
100					
4%					
14%					

Built-in DOE Commercial Reference Buildings

Large hotel

100,000

Solar project serves 42% of annual on-site load [note that this figure

0.5%

0.00

Inputs – PV+Storage

Storage

Paired with storage?

Maximum charge in 1 hour (kW)

- Maximum capacity (kWh)
- Maximum discharge in 1 hour (kW)
- Roundtrip efficiency (%)
- Dispatch and charging assumptions

Average output over utility top 10 hours

Financial Analysis Specifications

Project start year Analysis lifetime (years) Annual inflation rate Project discount rate

Yes	
80	
150	
60	
80%	
Dispatch f	or Full Value Stack
25%	

2017
25
2%
10%

Compensation Inputs Orange & Rockland Utility LSRV and DRV None LSRV location? Current DRV rate DRV rate basis Energy value 24-month average LBMPs Locational-Based Marginal Price (LBMP) Basis G-Hudson NYISO zone 2.0% Annual LBMP escalator (real) Capacity value Current Alternative 1 Rate Capacity value basis 2.0% Annual ICAP escalation rate (real) Environmental \$24.24 REC price (\$/MWh) Customer Bill Savings \$0.0900 Energy rate avoided by on-site consumption of solar (\$2017/kWh) 2% Assumed energy rate annual escalator (real) \$100.00 Annual demand charges avoided by storage (\$ per kW of storage capacity)

CALCULATE

Once you have filled all rows above, click the Calculate button to the left (or at the top of this tab)

Summary Outputs

TOTAL PROJECT VALUE (\$2017), BY YEAR:								
	2017		2018		2019		2020	
Compensation for solar exports	\$ 17,990	\$	18,080	\$	18,172	\$	18,266	
Compensation for storage	\$ -	\$	-	\$	-	\$	-	
Total Value Stack Compensation (\$2017)	\$ 17,990	\$	18,080	\$	18,172	\$	18,266	
Value of kWh consumed on site, at retail rate (Retail rate is taken from User Inputs Row 70)	\$ -	\$	-	\$	-	\$	-	
Total Project Value (\$2017)	\$ 17,990	\$	18,080	\$	18,172	\$	18,266	
TOTAL PROJECT VALUE (\$2017 / kWh), BY YEAR:								
	2017		2018		2019		2020	
Solar generation immediately exported (kWh)	162.198		161.387		160.580		159.777	
Discharge from storage system (kWh)	-		-		-		-	
On-site energy consumption served by solar (kWh)	-		-		-		-	
Average compensation for solar, per kWh	\$ 0.1109	\$	0.1120	\$	0.1132	\$	0.1143	
Average compensation for storage, per kWh	\$ -	\$	-	\$	-	\$	-	
Average Compensation, \$2017 per kWh	\$ 0.1109	\$	0.1120	\$	0.1132	\$	0.1143	
Retail rate for each kWh consumed on site	-		-		-		-	
(Retail rate is taken from User Inputs Row 60)								
Average Project Value, \$2017 per kWh	\$ 0.1109	\$	0.1120	\$	0.1132	\$	0.1143	

						24
	MONTHLY COMPENSATION FOR EXPORTS - SOLAR:					
Detailed						
0		Jan-17	Fe	b-17	Μ	ar-17
Outputs	Exports					
	Solar generation immediately exported by solar system (kWh)	9,948	1	1,157		13,336
	Value stack compensation from solar - Total project value (\$2017)					
	Energy value	\$ 518	\$	884	\$	535
	Capacity value (Current Alternative 1 Rate selected)	\$ 83	\$	93	\$	111
	Environmental value	\$ 241	\$	270	\$	323
	Demand reduction value	\$ 6	\$	6	\$	6
	Locational system relief value	\$ -	\$	-	\$	-
	MTC	\$ 307	\$	344	\$	411
	Total Value Stack compensation from solar generation immediately exported	\$ 1,155	\$	1,597	\$	1,386
	Average Value Stack compensation from solar - Per kWh exported (\$2017/kWh)					
	Energy value	\$ 0.0521	\$ 0	.0792	\$	0.0401
	Capacity value (Current Alternative 1 Rate selected)	\$ 0.0083	\$ 0	.0083	\$	0.0083
	Environmental value	\$ 0.0242	\$ 0).0242	\$	0.0242
	Demand reduction value	\$ 0.0006	\$ O	.0005	\$	0.0004
	Locational system relief value	\$ -	\$	-	\$	-
	MTC	\$ 0.0309	\$ 0	.0309	\$	0.0309
	Average Value Stack compensation, per kWh immediately exported	\$ 0.1161	\$ O).1431	\$	0.1039

Additional Resources

- 1. See the Documentation tab on the Calculator
- 2. VDER resources at nyserda.ny.gov/vder
- 3. Questions? Email vder@nyserda.ny.gov

