Low-Carbon Resources Initiative

Enabling the Pathway to Economy-wide Decarbonization

Neva Espinoza

March 26, 2021

VP, Energy Supply & Low Carbon Resources, EPRI <u>nespinoza@epri.com</u>

Decarbonization Briefing

Kristine Wiley Executive Director, GTI kwiley@gti.energy

✓ in f www.epri.com
© 2021 Electric Power Research Institute, Inc. All rights reserved.

EPRI's Role

Accelerate technology innovation

Develop and evaluate energy system solutions through broad global engagement with technical partners and other stakeholders

www.epri.com

Maximize member and societal value

Enable the future energy system

Conduct economy-wide technology, economic, and policy analyses and research to make an affordable, sustainable, and resilient energy future possible

Provide independent and objective information

Inform investment, policy, and regulatory decisions, deliver intelligence on the energy system, and train the industry workforce

GTI 80+ Year History of Turning Raw Technology into Practical Energy Solutions

GTI sees a carbon-managed future where integrated energy systems leverage low-carbon fuels, gases, and infrastructure.

GTI Overview

What does Deep Decarbonization Mean?

5

CCUS

The electric sector has had significant contribution to decarbonize over the past 15 years

EPRI Report 3002020700

2 *Reference case includes state-level policies. All cases use fuel prices and energy service demands from the EIA Annual Energy Outlook 2020 Reference case

www.epri.com

PATHWAYS

Economy-Wide CO₂ Emissions

Low-carbon fuels may be required to achieve economywide decarbonization

gti. Low-Carbon Resources Initiative 🚏

The Low-Carbon Resources Initiative (LCRI) is a five-year, focused R&D commitment to develop the pathways to advance low-carbon technologies for large-scale deployment. This initiative is jointly led by EPRI and GTI. The goal of the initiative is to enable a risk-informed understanding of options and technologies enabling significant economy-wide decarbonization through global partnerships and demonstrations, applied engineering developments, and technology acceleration of the most promising options.

Low-Carbon

Alternative

Energy Carriers

Enable infrastructure for future low-carbon fuel options

WHY A

ELECTRIC POWER RESEARCH INSTITUTE

Decarbonize sectors such as bulk transportation, large industries, and heating networks in cold climates

Large-scale clean power utilizing combustion turbines

Production

- » Electrolysis from
- clean energy sources
 » Biofuel and lowcarbon processes
- » Carbon capture & storage
- Innovative technologies

Storage & Delivery

- » Pipeline blending» Safety and codes/
- standards
- » Underground & aboveground storage
- » Chemical storage
 - Hydrogen Ammonia

Synthetic/Derivative Fuels Biofuels

Integration

- » Energy system modeling & analysis
- » Grid electricity,
- renewables & nuclear energy
- » Gas networks/ infrastructure
- » Consumer optionality

End Use

- » Transportation
- » Industrial
- » Power Generation
- » Heating
- » Commercial
- » Residential

VALUE **†††**

Individual commitment to environmental, social, and governance (ESG) efforts

Increase optionality of low-carbon solutions

Leverage investments across relevant sectors

Enable resiliency and affordability of low-carbon energy system

Version 1.7

Possible Low-Carbon Energy Pathways

www.epri.com

© 2021 Electric Power Research Institute, Inc. All rights reserved.

Beyond 2030 - Hydrogen/Clean Electricity Production

H₂ Production

Next Gen Electrolysis

Existing Clean Generation

Natural Gas CCS

H₂ Delivery

Utilize Existing Natural Gas Pipeline through Blending

Shipping and Trucking

H₂ End-Use

Boiler

Heavy Duty Transportation

Advanced

Fuel Cell

Electric Generation

Large Industry

Chemical Process

www.epri.com

© 2021 Electric Power Research Institute, Inc. All rights reserved.

Demonstration and Strategic Planning for H2@Scale in Texas

Building a Framework for Hydrogen Integration

Design, build, and operate the first dedicated hydrogen infrastructure network under DOE's H2@Scale program

Hydrogen Framework Study - Port of Houston

- Analysis of the integration of Texas wind power and natural gas resources and infrastructure
- Actionable 5-year framework for the Port of Houston to enable used to enable the deployment of stationary fuel cell power and hydrogen-fueled vehicles
- Viability of "renewable hydrogen" opportunities
- Ways to increase resiliency of the power grid by low or zero-emissions, on-site power generation using hydrogen or natural gas/ hydrogen blends for fuel

Project Pipeline of \$90 Billion

gti

Example Technology Cost Insight

Source: EPRI analysis, based on data from: IEA, "The Future of Hydrogen" (2019); EPRI, "Prospects for Large-Scale Production of Hydrogen by Water Electrolysis" (2019); commodity price data.

Impacts on End Use Applications

Industrial Scale Gas Turbines

Natural Gas Vehicles/ HD Trucks

Residential / Commercial

www.epri.com

What will be the role Gas Turbines in a Decarbonized World?

www.epri.com

© 2021 Electric Power Research Institute, Inc. All rights reserved.

Appendix

www.epri.com

LCRI Resources

LCRI General Information

- LCRI Overview 2 pager
- LCRI Scope
- LCRI FAQ

Quick Reads

- Hydrogen-Capable Gas Turbines for Deep Decarbonization
- <u>Safety Considerations of Blending</u> <u>Hydrogen</u>
- Hydrogen's Role in Decarbonizing Heat in the UK

LCRI Introductory Videos

- Advisory Structure
- Roadmap
- Digital Library
- Technology Pipeline
- <u>Global Hydrogen</u>
 <u>Roadmap</u>

- Colors of Hydrogen
- EPRI Overview
- GTI Overview

Low-Carbon Resources Initiative Research Vision

> Addressing the challenges and gap in achieving deep decarbonization across the energy economy

Focused on technologies that will be commercially deployed beyond 2030 to scale through 2050

Input & Development

- Q 400+ ADVISORS
- **TECHNOLOGY LANDSCAPING**
- **LCRI REQUEST FOR INFORMATION**
- GLOBAL INSIGHTS
- **EXISTING AND EMERGING ROADMAPS**

LCRI Research Vision Framework

R,D&D Approach

Goals – Strategies – Actions

Technology Spectrum

Track – Participate – Lead

Earth Week Engagement Plan

April 19	April 20	April 21	April 22	April 23			
		Earth Day					
Session 1: Pathways to Decarbonization Press Release Launch social media campaign	Session 2: Electrification Session 3: Nuclear	Session 4: Low-Carbon Resources Initiative: Research Vision to Economy- wide Deep Decarbonization	Session 5: Low-Carbon Resources Initiative: Unpacking the Vision	Session 6: Sustainability and Equity in the Just Energy Transition			

gti

OPTIONALITY Mitigation Strategies across the carbon chain

www.epri.com

<u>qti</u>

© 2021 Electric Power Research Institute, Inc. All rights reserved.

Natural Gas increasingly more important to the Electric System

Natural Gas increasingly more important to the Electric System

Coa		Natur	al Gas			Solar	Wind	Hydro N	luclear	Other
% Co	ontribution to U	S Electricity G	eneration							
% Co	ontribution to U	S Electricity C	O ₂ Emission	ns						
)%	10%	20% 3	0% 4	0%	50%	60%	70%	80%	90%	100%

~3500 Combustion Turbines (CT) in the US fleet today

65% of these machines are less than20 years old, representing 82% of the installed CT capacity

MITIGATIONRemoving CO2TECHNOLOGIESfrom the atmosphere

gti

INNOVATION Gas Turbine Fleet transition & beyond

From natural gas to hydrogen

Faster Flame Speed

Order of magnitude above methane

Hotter Burn Higher NO

Lower Heating Value

Hydrogen ~275 $^{\text{BTU}}/_{\text{scf}}$ Natural Gas 900 – 1000 $^{\text{BTU}}/_{\text{scf}}$

High Flammability Range

Hydrogen 4% – 75% Natural Gas 7% – 20%

SIEMENS

Estimates it could unveil a 25-MW to 50-MW hydrogen-burning gas technology within two years.

INNOVATION

Additive Manufacturing for Burners Mid-February run of **100% hydrogen** turbine prototype in Germany Member of EUTurbines committed to provide GTs supporting **20% hydrogen by 2020**, and **100% hydrogen by 2030**.

INNOVATION

Sequential Environmental (SEV) combustion system platform ability to burn the largest range of natural gas and hydrogen blended fuel mixture for new power plants being offered today Installed over **70 gas turbines** burning low-Btu **fuels that contain hydrogen** with **>4.5M operating hours**.

INNOVATION

Aero-derivatives can be configured with a Single Annular Combustor (SAC), which can operate on fuel blends, Heavy Duty Turbines offer 2 innovative combustor designs [Power 2019].

HYDROGEN

PROPANE

Illustration of relative molecular sizes

MITSUBISHI HITACHI

POWER SYSTEMS Fired 29 gas turbine units with hydrogen

content ranging between 30% and 90% with

>3.5M operating hours.

INNOVATION

Diffusion Combustor

700 MW – 30% hydrogen – 10% carbon

reduction

(compared to conventional CCGT)

AIR

NATURAL GAS