Stakeholder Engagement Information Session

February 29th, 2016
Agenda

• 10:00 – 10:15 Welcome and Opening Remarks
• 10:15 – 10:45 Transmission Planning Overview
• 10:45 – 11:15 Overhead System Planning Overview
• 11:15 – 12:00 Underground System Overview
• 12:00 – 1:30 Lunch and Tours
• 1:30 – 2:00 System Planning and Forecasting Overview
• 2:00 – 2:30 Capital Investment Planning Overview
• 2:30 – 3:00 Stakeholder Engagement Process and Next Steps
• 3:00 – 3:10 Stakeholder Survey
Welcome

- Stakeholder Engagement Information Session
- Focus today is Transmission and Distribution Planning Process and Capital Investment Plan
- Enabling Distributed Energy Resources (DER) to meet state goals and Reforming the Energy Vision (REV)
Transmission Planning

John Borchert

Senior Director, Energy Policy and Transmission Development
Central Hudson Gas and Electric Corporation
Overview
A Stakeholder Perspective

• Transmission System Data and Fundamentals
• NYISO and Utility Transmission Planning Process
• Transmission Planning Drivers and Assumptions
• Changes that Affect Transmission Operation and/or Planning
• Relevance to REV, the DSIP and Stakeholders
Transmission System and Design Practice

- Electric Transmission System is a large sophisticated machine
 - Evolving over 100 years
- Network Design to Allow Flow from Generators to Loads
 - Flows can move in either direction on a line
 - Flows can move over many paths
 - Allows flow following loss of a network path
- Operated using sophisticated controls
 - Computer models
 - High Speed Communications
- Operated to deliver lowest cost to consumers while maintaining reliability
 - Operated based on market efficiency
 - Must abide by reliability rules
NYISO by the Numbers

The NYISO manages the flow of electricity for the Bulk Electric System in New York State, which encompasses the service territories of all the investor-owned electric utilities, public power authorities and municipal electric systems.

- **39,039** MW of power plant capacity (net dependable capacity)
- **33,956** MW record peak demand (July 19, 2013)
- **1,124** MW Demand response resources (Summer 2014)
- **6,124** MW Renewable resources
- **11,086** circuit-miles of transmission lines
The circles represent transmission substation commonly referred to as buses.
Local Area Transmission Systems

NEW YORK POWER AUTHORITY
wholesales electricity throughout the state

ROCHESTER GAS AND ELECTRIC CORPORATION

NEW YORK STATE ELECTRIC AND GAS CORPORATION

CENTRAL HUDSON GAS AND ELECTRIC CORPORATION

ORANGE AND ROCKLAND UTILITIES, INC.

CONSOLIDATED EDISON CO. OF NEW YORK, INC.

LONG ISLAND POWER AUTHORITY

THE JOINT UTILITIES OF NEW YORK
Neighboring Transmission Systems
Typical Transmission Power Flow

The Bulk and Local Transmission Systems are a network for reliability of supply to load.
General Transmission Planning Objectives and Considerations

• To plan and maintain **safe, reliable and efficient** service
 – Sufficient capacity and transmission security
 • Proper operating voltage and power quality
 • Ability to restore system capability
 – Market efficiency and flexibility
 – Able to allow interconnection of new resources

• Planning processes are routinely performed to ensure system reliability and efficiency (every 2 years with a 10 year look ahead)

• Additional studies to test scenarios or other system changes
 – Announced retirements
 – New regulations or policy goals
 – Aging infrastructure
Three Sets of Reliability Standards Apply

North American Electric Reliability Corporation (NERC)
• Independent, not-for-profit organization with mission to improve the reliability and security of the bulk power system in the U.S., Canada and part of Mexico
• Compliance with NERC Reliability Standards became mandatory and enforceable in the U.S. in 2007

Northeast Power Coordinating Council (NPCC)
• Includes New York, New England, Ontario, Québec and the Maritimes
• Formed as voluntary, not-for-profit, regional reliability organization in 1966 in response to the blackout in 1965
• NPCC is our Regional Reliability Organization (RRO) for northeast North America

New York State Reliability Council (NYSRC)
• Not-for-profit organization established in 1999
• Responsible for Reliability Rules specific to the New York State Bulk Power System
• U.S. law authorizes New York State to impose more stringent reliability standards
Transmission Planning

NYISO Planning

- Interconnection Studies
- Annual NYISO Gold Book
 Load & Capacity Data
- Annual Local Transmission
 Owner Plans (LTPs)

NYISO Comprehensive System Planning Process (CSPP)

- Public Policy Transmission Planning Process
- Reliability Planning Process (RPP)
- Economic Planning Process

Courtesy of the NYISO
NYISO Transmission Planning Processes
Reliability

Reliability Planning Process

• Identify reliability needs of the New York Bulk Power Transmission System
 – Assess both transmission security and adequacy
 – Assess resource adequacy

• Solicits solutions for identified needs
 – Backstop solutions from Transmission Owners
 – Market or regulated solutions from Developers

• Develop comprehensive reliability plan
 – Ties planning processes together
NYISO Transmission Planning Processes

Economic Planning Process

• Two Phases
 – Study Phase
 • Identify congestion on the New York Bulk Power Transmission System
 • Identify generic solutions
 – Project Phase
 • Developers propose projects for review
 • Must be cost/beneficial and pass voting process
NYISO Transmission Planning Processes
Policy

Public Policy Planning Process

• Address public policy needs of the New York Bulk Power Transmission System
 — NY PSC solicits transmission needs and determines transmission needs driven by public policy
 — NYISO solicits projects to meet transmission needs
 — NYISO assesses proposed solutions and projects
 — NYISO evaluates and selects solution(s) and project(s)

• There are currently two public policy transmission needs driving projects today
 — Western New York – release bottled Renewable Generation
 — AC Transmission – relieve bottled upstate generation to serve downstate load
Local Transmission Planning

- Local transmission plans
 - Non-Bulk transmission
 - Utilize similar studies to the reliability planning process
 - Maintain operation after contingencies
 - Maintain voltage and stability
 - Able to operate with loss of a generator
- Projects are developed to
 - Replace Infrastructure
 - Address Compliance Issues
 - Maintain Operating capability
 - Improve both System & Local Load Serving capability
- Projects typically address multiple issues
- These projects feed into the NYISO Comprehensive Plan
Transmission Planning Assumptions

• Demand forecast
 – Forecast modifiers – DR and DER
 – Reserve margin

• Generation, both existing and forecast
 – Availability and variability
 – Forecast modifiers – SCR and DER
 – Retirements
 – Resource dispatch

• Transmission Topology

• Seasonality of loads and resources

• Reliability Criteria

Definitions:
DR – Demand Response
DER – Distributed Energy Resources
SCR – Special Case Resources
Forecast Modifiers
Impact of SCR, DR and DER

- Wholesale DR (SCR) as a resource
- Local DR as a load modifier
- DER as both a resource and load modifier
Typical Transmission Power Flow With High Penetration of DER

Potential for flow in both directions at the Transmission and Distribution Interface
Impact of Increased DER on Transmission System Operation and Planning

• Operation
 – Reversal of power flow at T&D Interface
 – Voltage profile and control
 – Voltage and transient system analysis
 – Changes in flow patterns on transmission system
 – Changes to critical system conditions typically assessed

• Planning
 – Forecast DER impacts on Load & Resources
 – Need to model DER in base case models
 • Previously load at T&D Interface was net
Transmission Planning Take Away Thoughts

• Transmission planning today is a complicated multi jurisdictional process
 ─ Processes prescribed by FERC
 ─ Criteria dictated by Reliability Organization
 ─ Influenced by PSC (siting and rate cases)
 ─ Other stakeholders

• Many drivers beyond load growth
 ─ Generator resources
 ─ Aging infrastructure
 ─ Market access and technology

• DER is currently not a huge system impact

• Planning for DER and integrating DER into the transmission system is adding a layer of complexity
Questions?
Overhead Distribution Planning

Dave Conroy — Director, AVANGRID
Angelo Regan — Director, Orange & Rockland
Transmission and Distribution Planning
Different Objectives

Transmission Planning
- Addresses a mesh network
- Addresses grid stability and bulk power imports and exports

Distribution Planning
- Radial and granular
- Addresses thermal capacity, power quality, and restoration times

- Transmission planning addresses a mesh network and addresses grid stability and bulk power imports and exports
- Distribution planning is radial and granular, addressing thermal capacity, power quality and restoration times
Distribution System is Tailored to Meet Localized Needs

- Design of distribution circuits is driven by topology, customer mix and load and available resources
- Distribution circuits are often switched into abnormal configurations for planned and unplanned situations
Distribution systems comprised of radial distribution feeders that include various devices to ensure safe and reliably service for end users.
General Distribution Planning Objectives and Considerations

• All utilities plan to maintain safe and reliable service as a priority
 — Sufficient capacity
 — Proper voltage and power quality
 — Operational flexibility and restoration

• Detailed analysis of the current and projected future operating states of the electric distribution system are regularly completed with respect to
 — Company specific design standards and risk analysis, capability and geography/topology
 — Specific industry (e.g., IEEE/ANSI) operating criteria and guidelines

• Analysis routinely performed to review both short-term requirements, as well as long term scenarios
The Distribution Planning Process (DPP) is an annual process that lasts approximately 8-10 months and identifies projected distribution capacity and operating deficiencies and determines mitigation plans to address those projected deficiencies.
Short-Term Planning Process

- Review of most recent summer operating conditions on all substation transformer banks
 - Actual loading vs. weather normalized loading
 - Performed on distribution circuits and feeders when possible
 - Voltage and VAR profiles
 - Power factor conditions
- Perform analysis of areas that experienced operating issues to determine short-term solutions
 - Voltage problems
 - Equipment approaching or exceeding operating limits
 - Contingencies
Short-Term Planning Process Cont’d

• Solutions are typically more localized, smaller and lower cost
 — Capacitor and Regulator installations
 — Install additional switching capability for system reconfiguration
 — Stepdown transformer upgrades, line re-conductor or extensions, voltage conversions

• Determine near-term equipment operating conditions
 — Weather normalized load forecasts for banks and circuits
 • Anticipated near-term customer growth and block load additions
Short-Term Planning Process Cont’d

• Detailed modeling of entire distribution system under both normal operating conditions and prescribed contingency conditions to project for and analyze appropriate operating conditions
 — Loading, phase balancing, voltage coordination, power factor, protection coordination
• Analysis of distribution automation and auto-loop scheme operation
• Determination of NYISO under-frequency/manual load shed requirements
 — Combined function of Planning, Protection, Engineering and Operations
• Analysis of the effects of DG/DER on all of the above
Long-Term Planning Process

- Builds off of all work completed as part of the short-term planning review
 - Most Companies perform an annual detailed analysis for the upcoming 5 to 10 year period
 - Can be performed periodically extending to a 20 year period
- Determine long-term equipment operating conditions
 - Weather normalized load forecasts for substation transformer banks
 - Anticipated long-term customer growth and block load additions
- Detailed modeling of entire distribution system under both normal operating and prescribed contingency conditions (loss of a circuit, substation bank or entire substation)
 - Loading, backup capability and restoration to meet planning standards
- Analysis of the effects of DG/DER on all of the above
Long-Term Planning Process
Cont’d

• Substantial analysis completed to determine lowest cost solutions
 — Permanent switching / system reconfigurations to optimize capacity utilization
 — Addition of distribution automation/smart grid technologies to further optimize asset utilization and capacity sharing through temporary system reconfiguration
 — Installation of new circuits prior to the need to build higher cost substation solutions
 — Constructing lower cost infrastructure alternatives to defer higher cost solutions
Long-Term Planning Process
Cont’d

• Solutions are typically implemented for a broader geographic area, have more electric system and customer impact, take longer to permit and construct and are higher cost
 — Additional distribution circuits
 — Adding substation transformers to existing substations
 — Upgrading existing substations (increased capacity or different operating voltage)
 — Adding new substations
Planning Challenges with Significant DER Penetration

- Forecast accuracy – an inexact science becomes significantly more complex
 - Required coincidental readings per circuit significantly increases for the entire load profile of operating conditions
 - Sudden changes in weather (cloud cover) requires very flexible system
 - Contingency planning scenarios increases and is more complex
- Voltage and VAR profile and control – T&D
- Protection and coordination – T&D
- Reverse power flow – T&D
- Need for improved analysis tools and systems
 - Capability of modeling high penetration DER
 - Capability of modeling combined T&D effects
 - Collect significantly increased and new data for modeling
 - Real world operating data to improved assumptions, forecasts and modeling data
- Determination of radial distribution system hosting capacity
 - A priority for all stakeholders to be addressed in the supplemental process
Conclusion

• Distribution Planning requires substantial levels of granularity
 — Obligation to reliably serve end-users in service territory
 — Agile planning process
 — Substation, transformer bank, feeder, feeder devices planning
 — Significant amounts of data and analysis

• Distribution Planning is complex and requires high degree of granular coordination to ensure cost effective solutions are deployed while planning for the future
 — Asset infrastructure replacement plans
 — Distribution operational switching capabilities, voltage/power quality and protection
 — Local area understanding of electric system performance
 — Integration of high penetration DG / DER adds substantial complexity to an already detailed and complicated process

The Joint Utilities are committed to expand the planning tools and techniques to integrate DER into the distribution system.
Questions?
Underground Distribution Networks

Christopher G. Jones

Department Manager - Distribution Engineering/System Design, conEdison
Topics

• Con Edison overview
• Underground secondary network overview
• DER integration into secondary networks
 — Targeting load relief with DER
 — Reliability considerations
 — Technology updates allowing two-way flow
• Secondary network DG hosting capacity
Con Edison Overview

- **Service Territory**
 - Customers: 3,300,000
 - Population: 9,200,000
 - Area: 604 mi²
 - Peak Demand: 13,241 MW
 - Con Ed Load Density: 21.9 MW/mi²

- **Service Voltages**
 - Transmission: 345kV, 500kV, 230kV, 138kV, 69kV
 - Primary Distribution: 33kV, 27kV, 13kV, 4kV
 - Secondary Distribution: 120/208V, 265/460V
Secondary Network Design and Operation

• Covers 85% of Con Edison’s territory

• **Multiple primary (MV) distribution feeders and transformers provide parallel paths to common secondary (LV) grid**

• Primarily a **2nd Contingency** design

• Diversity – Substation and Field

• Design allows for
 — Reliability at peak loads
 — Fault repairs and scheduled work to be performed without interruption of service to customers
Network System Overview
Network System

Typical Underground Electric System
Network System
Network Equipment
Network Equipment
Secondary (120/280V and 460V) Mains Map
Equipment Rating
Rate Feeder Section Using the CYMCAP Module

Eq=50 Hz
R= IEC 228

Ambient temp = 20.0°C

R-0.65°C/MW

Native soil= 0.65°C·M/W
Integration of DER in a Secondary Network Using DER’s for Load Relief

• Contrasting with a radial circuit
• Reliability issues
• Considers a single DER
Problem Solved

- assuming DER is reliable
 (has to be there at summer peak)
Three (3) Transformer Secondary Spot Network (Fully Isolated)
Substation 13kV Bus

Overloaded Sections (1MW)

1/3 MW
1/3 MW
1/3 MW

(1MW)

D.E.R.

Customer Load

THE JOINT UTILITIES OF NEW YORK
Problem Solved

- technically the DER only needs to be there at Summer Peak and when there is a certain 2nd contingency)

- But it needs to be there
Substation 13kV Bus

Overloaded Sections (1MW)

Customer Load

Four (4) Transformer Secondary Spot Network
(Fully Isolated)
Integration of DER in a Secondary Network

Technology changes to allow two-way power flow on a network
Substation 13kV Bus

Customer Load
Substation 13kV Bus

Customer Load

Normal Operation
Substation 13kV Bus

Normal Operation

Customer Load
Substation 13kV Bus

Normal Operation

Customer Load
Normal Operation
(with DG)
Normal Operation (with DG)
Normal Operation
(with DG)

- Load Dropped or
- Island Condition

Substation 13kV Bus

DG

Customer Load
New Scheme to allow reverse flow at an Isolated Network
New Scheme to allow reverse flow at an Isolated Network

Effectively Disables the Sensitive Reverse Element
New Scheme to allow reverse flow at an Isolated Network

But what happens when you actually really do want to trip?
New Scheme to allow reverse flow at an Isolated Network

Communication Aided Tripping
Substation 13kV Bus

So the last scheme discussed Isolated Networks
Here we are connected to the distributed Network
If too much DG gives us reverse power flow
The local Network Protectors will open

Normal Operation (with DG)
... except and all is OK.
PV41P - P Total
From 1/1/2016 to 2/13/2016

THE JOINT UTILITIES OF NEW YORK
Normal Operation (with DG)
Normal Operation (with DG)
Normal Operation
(with DG)
Normal Operation (with DG)

Even if DG Output is relatively constant ... if unable to produce kVArS
Normal Operation (with DG)

The local customer kW’s will come from the DG (e.g., PV)
But the kVar’s will come from the network
So solutions involve:

“Anti-Pumping”
- detects multiple operations

“Rate-of-Change”
- detects “slow” moving power swings

Aim is too keep NWP closed except for Fdr Outages
Integration of DER in a Secondary Network

Hosting Capacity
DER Hosting Capacity

http://dcclab-pvlsql/PVMLMapDG/default.htm
DER Hosting Application

http://dcclab-pvlsql/PVLMapDG/default.htm

THE JOINT UTILITIES OF NEW YORK
Conclusion

- There are significant differences in the design and operation of overhead radial distribution versus underground network distribution.
- Consolidated Edison is in the process of developing tools to evaluate hosting capacity for DER on network distribution systems.
- The techniques for evaluating hosting capacity on radial distribution are complex and can’t be transposed from the network analysis.
Questions?
Lunch and Tours

Logistics

- Lunch outside of the auditorium to the left
- Three groups that signed up during registration
- Meet tour leaders in the lobby where you signed up and received your pass
- Tours start every 10 minutes and will be complete within 45 minutes
- Back in the auditorium at 1:30 for afternoon sessions
Lunch and Tours

Tour Groups

1. **Green 12:00**
 - Dave MacRae/ Eugene De Simone

2. **Blue 12:10**
 - Andy Bishun/ Angie Mazzella

3. **Red 12:20**
 - Balvinder Deonarine/ Diana Cabrera

Sample Schedule

<table>
<thead>
<tr>
<th>Topic</th>
<th>Schedule</th>
</tr>
</thead>
<tbody>
<tr>
<td>Meet in Lobby</td>
<td>12:00</td>
</tr>
<tr>
<td>Network Lab (205)</td>
<td>12:15</td>
</tr>
<tr>
<td>Overhead Training Area</td>
<td>12:30</td>
</tr>
<tr>
<td>Secondary Splicing</td>
<td>12:45</td>
</tr>
</tbody>
</table>
Planning and Forecasting for the Distribution Grid

Rob Sheridan - PE, Director, New Energy Solutions, National Grid
Mark Domino - PE, Manager, Distribution & Subtransmission Planning, National Grid
Planning Objectives

- **Safety**
 - Public
 - Employee

- **Compliance**
 - Obligation to Serve
 - Standards and Codes
 - Licenses and Contracts

- **Reliability**
 - Prevent Failures
 - Respond to Failures

- **Cost Effective**
 - Initial
 - Lifetime
 - Capital
 - O&M

THE JOINT UTILITIES OF NEW YORK
Planning Cycle is a Continuous Process

- Annual cycle
- Integrates wide breath of considerations, data sources and stakeholders
- Risk based prioritization
- Leads to multi-year work plan
Forecasting Many Inputs

Capacity
- Load vs Rating
- Voltage and Power Factor

Reliability
- Frequency of Interruption
- Duration of Interruption

Asset Condition
- Inspections
- Maintainability

Resilience
- Ability to recover from a Major Event

Operability
- Standard Equipment and Procedures
- Systems Integration
- Skills and Training

Cost
- Installation
- Operation & Maintenance

Need Date
- Lead Time
- Longevity

Project Synergies
- Project Implementation
- Long Term Plan
Forecasting Draws from a Diverse Set of Inputs

Historic Loads
- Regional Map

Demand Response
- NYISO Programs

Regional Economic Drivers
- Real Personal Income
- GDP
- Employment

Weather Normalization
- Heating Degree Days
- Temperature-Humidity Indexes

Approach
- Weather Normalized Historic Loads
- Energy Growth
- Trends in Load Factor
- County Growth Rates
- Then apply EE, DR, DG

Distributed Generation
- PV
- Wind
- CHP

Electric Vehicles
- NY AGENDA, Volumes
- NY AGENDA PEAK MW (% load increase)

Energy Efficiency
- Weather normalization and data visualization
NG Works with NYISO

1. Fall following Summer
2. Load Forecasting Task Force
3. NG Supplies 50/50 Forecast Value
4. NYISO Applies Criteria
5. NYISO uses Company Forecast if Within Criteria
6. Forecast Produced for Following Summer
Long Term Forecast Interaction with NYISO

NYISO Receives Long Term Forecast

NYISO Does not do Company Level Forecast

Same Economic Indicators Service

Similar Approach to EE

Similar Approach to DG

Similar Approach to Weather Normalization & Extreme Work

NG Uses NYISO DG Programs in Forecasting
“Top-Down” Forecasting Framework

- Accurately represents the impact on growth of policy and economic factors
- Very limited spatial accuracy
- Customer class aggregations – does not deal directly with heterogeneity of our customers, their energy usage or their energy decisions
“Bottom-Up” Forecasting Framework

- Focuses on the factors that directly influence and drive customer energy usage behavior and decisions
- Maximum spatial accuracy at the individual parcel/structure/customer level
- Deals directly with the significant heterogeneity of our customers, their energy usage or their energy decisions
Integrated “Top-Down” and “Bottom-Up” Forecasting Framework

Combines the benefits of both methodologies

Facilitates system impact analyses at the feeder or sub-feeder level

THE JOINT UTILITIES OF NEW YORK
Bottom-Up Models

Customer Specific

- Components Usage
- Structure and End-Use Energy Usage
- Energy Usage Behavior
- Energy Investment Decision Making

Customer-Specific Retail Market Growth Models

- Distributed Generation
- Electric Vehicles
- Energy Usage Behavior
- Demand Response
- Energy Efficiency
- Storage
Analytics

Distribution Model
- Detailed individual feeder model down to services
- Power Flow Solutions
- Multiple Analyses Supported

Holistic Analysis
- Integration of all customers, markets and components
- Wide and Deep set of factors, constraints, interactions and behaviors
Typical Study
Multiple Challenges

THE JOINT UTILITIES OF NEW YORK

Milton Ave 266
- 117% of capacity
- 3 feeders worst 40%, outage exposure, 1 feeder Overloaded, 1 feeder above 80%

Camillus 10
- 50% of capacity.
- No EMS/SCADA, Asset Condition
- 4kV island

Hinsdale 218
- 84% of capacity
- 1 feeder worst quartile, NO EMS/SCADA, Asset Condition, 4kV Island

Harris Road 235
- 42% of capacity
- 1 feeder worst 10%, 1 feeder Overloaded, 1 feeder above 80%
Study Process

- Gather and Scrub Peak Loads (2 months)
- Apply Forecast and Compare to Ratings (0.5 months)
- Gather Study Team (0.5 months)
- Gather Asset Condition Information and Stakeholder Input (1-2 months)
- Solution Development and Evaluation (5 months)
- Technical Review (1 month)
- Authority to Spend (2 months)
- Support team engineering, permitting and licensing, procurement, construction, records (1-4 years)
- Monitor Results and Repeat (Monitor)
Results
Multiple Challenges Addressed

Station Retired, Feeder Rebuilds/Conversions

Camillus 10

Station Retired Feeder Rebuilds / Conversions

Future Opportunities for DER to impact outage exposure

Milton Ave 266

Outage Exposure Reduced within guidelines, feeder relieved, better ties and switching

Hinsdale 218

Station Retired, Feeder Rebuilds/Conversions

Reduced outage exposure, increased feeder tie capability. Other concerns outside the scope

Harris Road 235

Potential 5 MVA in new hosting capacity with 2 new feeders. All feeders have EMS/SCADA

Expanded substation with 24/32/40 transformer, 28 MVA firm capacity, 2 new feeders+2 spare feeder, 4 mi OH Line, 0.6 mi UG cable, $11.5M

Outage Exposure Reduced within guidelines, feeder relieved, better ties and switching

Reduced outage exposure, increased feeder tie capability. Other concerns outside the scope

THE JOINT UTILITIES OF NEW YORK
Summary

Our inputs do not come in at the same time nor have the same quality

There is hourly data for about 50% of substations and distribution circuits

Data needs to be scrubbed for abnormal configurations

Zone Forecasts are applied to substation transformers and distribution circuits

Market Intelligence can alter forecasts

Asset Condition is an important consideration

Developed solutions can be short term and/or long term projects

Infrastructure projects may increase DER opportunities

DER can augment the solution toolbox

We are looking forward to working with the DER Community to support the goals of REV
Questions?
Capital Investment Planning

Damian Sciano
Director - Distributed Resource Integration, conEdison
Topics

• Overview of capital expenditures (Con Ed)
• Timing considerations
• Illustrative utility comparison
• Sample capital investment projects
Overview of Electric System Components

Transmission
(ex. 230kV, 345kV)

Sub-transmission
(ex. 69kV, 138kV)

Transmission
Distribution

Primary Feeders
(ex. 4kV, 15kV)

Secondary Cables
(120 V)

Switching Stations

Area Stations

Unit
Substation

Distribution
Transformer

NETWORK A

NETWORK B

RADIAL AREA C

THE JOINT UTILITIES OF NEW YORK
Distribution Capital Expenditures

THE JOINT UTILITIES OF NEW YORK

- System Expansion
- Storm Hardening
- New Business
- IT
- Risk Reduction
- Interference
- Emergency Response/Replacement

Actual vs Forecast Capital Expenditures ($000's)
Emergency Response/Replacement

• Replacement of failed equipment due to
 – Age
 – Environment
 – Loading

• Includes
 – Lights out conditions
 – Temporary “shunts” and
 – Repairs to restore design criteria

• Limited predictability

• Geographically sparse
Emergency Response/Replacement
Interference

- Same physical location occupied by existing utility facility and proposed municipal facility
Interference
Cont’d
Risk Reduction

- Compliance programs (e.g., secondary inspection program)
- Targeted programs and components
- System resiliency
Information Technologies (IT)

- Specific to operations capital
- Does not include common plant
- Captured in both T&D
New Business

• New buildings and developments
• Modified services
• Does not include “organic” growth due to increased usage
Storm Hardening

• Targeted programs
• Increase system resiliency
• Respond to increased flooding standards
System Expansion

• Due to organic load growth
• Several categories
 – Area substation
 – Feeder relief
 – Transformer and secondary relief
• Varying implementation times
 – Several years for substations
 – Nine months for feeders and transformers
System Expansion
Cont’d

Ten Year Substation Loading as % of Capability
Deeper Look at 2017 Spend

Capital ($000's)

Actual

Forecast

- System Expansion
- Storm Hardening
- New Business
- IT
- Risk Reduction
- Interference
- Emergency Response/Replacement

THE JOINT UTILITIES OF NEW YORK
Timing of Distribution Capital Implementation*

*Timing of IT projects is not included in illustrative graph
Snapshot of 2017 Spend

THE JOINT UTILITIES OF NEW YORK
Category Nomenclature across Other Utilities

<table>
<thead>
<tr>
<th>Description</th>
<th>Con Ed</th>
<th>O&R</th>
<th>Nat Grid</th>
</tr>
</thead>
<tbody>
<tr>
<td>Emergency Work</td>
<td>Emergency</td>
<td>Replacement</td>
<td>Damage/Failure</td>
</tr>
<tr>
<td>Interference</td>
<td>Interference</td>
<td>"See Line 7"</td>
<td>"See Line 4"</td>
</tr>
<tr>
<td>Reliability</td>
<td>Risk Reduction</td>
<td>Risk Reduction</td>
<td>Asset Condition</td>
</tr>
<tr>
<td>New Customer Connections</td>
<td>New Business</td>
<td>New Business</td>
<td>Customer Requests/</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Public Requirements</td>
</tr>
<tr>
<td>System Expansion/ Load</td>
<td>System Expansion</td>
<td>System Expansion</td>
<td>System Capacity and</td>
</tr>
<tr>
<td>Reinforcement</td>
<td>IT</td>
<td>"See Line 7"</td>
<td>Performance</td>
</tr>
<tr>
<td>Information Technology</td>
<td></td>
<td></td>
<td>"See Line 8"</td>
</tr>
<tr>
<td>Storm Hardening*</td>
<td>Storm Hardening</td>
<td>Storm Hardening</td>
<td>Non-Infrastructure</td>
</tr>
<tr>
<td>Other</td>
<td>N/A</td>
<td>Other</td>
<td></td>
</tr>
</tbody>
</table>
Category Comparison across Other Utilities

Illustrative
Current Feeder and Transformer Annual Planning Cycle

Aug 2015
- Actual peak data (summer experience)
- Scale models to design criteria (86 temp variable)
- Overlay load forecast
- Evaluate models
- Evaluate alternatives and pick best solution
- Create load relief job
- Construct load relief job

May 2016
NWA Planning Cycle

Aug 2015

• New multiple year approach
• Create models for 2-3 years
• Load forecast for 2-3 years (load and loss factors)
• Evaluate models
• Evaluate alternatives and pick best solution
• Combination of load relief job and NWA solution

May 2018
Examples of Primary Load Relief

• Swap load
 – Transformers
 – ATS
 – Loops
 – 4 kV unit substation

• Replace limiting section (NWA possible)
 – Vacant conduit
 – Existing conduit
 – New conduit

• Remediation plan (NWA possible)
 – Spec change to tolerate for multiple years
Cable Overload Condition
Location

[Map showing the location of transformers and feeder cables with an area substation highlighted.]

Transformer
Feeder Cable

Area Substation
Load Relief Cable Section Solution

3-500 EPR NL Emergency Overload (Current cable installed)

<table>
<thead>
<tr>
<th>Actual Loading (Overload Condition)</th>
<th>Normal Summer Emergency Rating</th>
<th>% Overload</th>
</tr>
</thead>
<tbody>
<tr>
<td>610 Amps</td>
<td>560 Amps</td>
<td>109% (50 amps)</td>
</tr>
</tbody>
</table>

Install new 3-750 EPR NL Cable Ratings

<table>
<thead>
<tr>
<th>Actual Loading</th>
<th>Normal Summer Emergency Rating</th>
<th>% Loading</th>
</tr>
</thead>
<tbody>
<tr>
<td>610 Amps</td>
<td>700 Amps</td>
<td>87% (90 amps capacity)</td>
</tr>
</tbody>
</table>
Project Costs

<table>
<thead>
<tr>
<th>Remedy</th>
<th>Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>Replacing 1 Cable Section (250 ft)</td>
<td>$38,000</td>
</tr>
<tr>
<td>Replacing 1 Cable Section & Conduit</td>
<td>$188,000</td>
</tr>
<tr>
<td>(250 ft section typically)</td>
<td></td>
</tr>
<tr>
<td>DER Solution – Solar example (50 amps</td>
<td>Estimated $2 million</td>
</tr>
<tr>
<td>approximately 1 MW)</td>
<td>(assumes $2.00 per watt)</td>
</tr>
</tbody>
</table>
Overload Condition
Customers to Target

Transformer
Feeder Cable
Area Substation
Transformer Load Relief

- Swap/divert load
- Upgrade existing transformer
 - New NWP
 - Same size higher rating
 - Increased capacity in same structure (rare)
- Install additional secondary cable (NWA possible)
- Install new vault and transformer (NWA possible)
Transformer Overload Scenario

- Transformer
- Feeder Cable
- Area Substation
- Overload Area to target
Project Scope

Goal and Costs

<table>
<thead>
<tr>
<th>Remedy</th>
<th>Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>Estimated Capital Cost</td>
<td>$350,300 - $700,000 (typical range)</td>
</tr>
<tr>
<td>DER Solution - Solar example (0.6 MW*)</td>
<td>Estimated $1,200,000 at $2.00 per watt</td>
</tr>
</tbody>
</table>

* Realize only 25% to 50% of solar addition due to network configuration
** In addition, solar must be discounted for time of transformer peak loading (34% at 5PM)

Possibly more expensive, but employing the societal cost benefit test (SCT) may result in a higher benefit cost for solar
Peak Day Loads by Network
System Expansion Project
Brooklyn-Queens Demand Management Program (BQDM)

- Meets capacity shortfall through a $200 million program
 - Non-traditional customer-sided 41 MW ($150 m)
 - Utility-sided solutions 11 MW ($50 m)
- Long duration, night peaking network requires a portfolio of solution and an understanding of appropriate discount rates for various DER
- Ultimately, the effective DER contribution can be located anywhere within the footprint

Deferral of $1.2 billion in traditional network upgrades with distributed solutions
Brooklyn-Queens Demand Management

- $1.2 billion substation deferral using portfolio of alternative investments in Brownsville network
- Earn rate-of-return plus incentive based on implementation
Recap

• Capital expenditures meet a variety of needs and require varying amounts of time to implement

• Utilities are reviewing planning processes to identify best opportunities to integrate DER; this will be coupled with stakeholder engagement

• Additional work needs to be done to standardize capital investment plan categorization among utilities

• We are working to evaluate multiple types of capital projects for NWA solutions versus traditional solutions and share these results so everyone can learn from them

• A robust Benefit Cost Analysis process is a key enabler to best integrate DER into the utility planning process
Questions?
Next Steps

Tom Mimnagh
Department Manager - Utility of the Future, conEdison
Next Steps

• Distributed System Implementation Plan – filing 6/30/2016
• Supplemental Joint Utility DSIP – filing 9/01/2016
• Incorporate DSIP Guidance – March 2016
• Expanded Stakeholder Engagement – ongoing
Next Steps
Stakeholder Engagement

Stakeholder Advisory Group (<15 members)
- Inform / advise

Joint Utilities Working Group
- Inform and share input

Prepare filing, incorporate inputs

Supplemental DSIP

Engagement Groups (~20 members each)
- Distribution Planning
- Grid Operations
- Market Operations
Next Steps
Supplemental DSIP Topics

Distribution System Planning
- Improved Interconnection Process
- Hosting Capacity Methodology
- Demand Forecasting
- BCA Screening
- DER Forecasting
- Probabilistic Planning Methodology
- Storage Methodology
- Load Flow Analysis Process

Grid Operations
- System Data
- Joint System Planning and System Operations
- Coordinated Dispatch and Tools – Other DER
- ISO Roles and Responsibilities
- Coordination at T&D interfaces

Market Operations
- Customer Data
- NYISO, Coordinated DER Dispatch - DR
- Market Participant Rules
- Granular Pricing
- Measurement / Verification
- Settlement Procedures

THE JOINT UTILITIES OF NEW YORK
Your Opinion Matters

The Joint Utilities of NYS are committed to engaging stakeholders in working towards meeting the REV goals. Surveys are now being distributed to you. Please take a few minutes and let us know your thoughts about today’s events and ideas for the future.